Deciphering the Noise: The Welfare Costs of Noisy Behavior
نویسندگان
چکیده
Theoretical work on stochastic choice mainly focuses on the sources of choice randomness, and less on its economic consequences. We attempt to close this gap by developing a method of extracting information about the monetary costs of noise from structural estimates of preferences and choice randomness. Our method is based on allowing a degree of noise in choices in order to rationalize them by a given structural model. To illustrate the approach, we consider risky binary choices made by a sample of the general Danish population in an artefactual field experiment. The estimated welfare costs are small in terms of everyday economic activity, but they are considerable in terms of the actual stakes of the choice environment. Higher welfare costs are associated with higher age, lower education, and lower income.
منابع مشابه
On the effect of low-quality node observation on learning over incremental adaptive networks
In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....
متن کاملNoisy images edge detection: Ant colony optimization algorithm
The edges of an image define the image boundary. When the image is noisy, it does not become easy to identify the edges. Therefore, a method requests to be developed that can identify edges clearly in a noisy image. Many methods have been proposed earlier using filters, transforms and wavelets with Ant colony optimization (ACO) that detect edges. We here used ACO for edge detection of noisy ima...
متن کاملSystem Identification Based on Frequency Response Noisy Data
In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...
متن کاملSystem Identification Based on Frequency Response Noisy Data
In this paper, a new algorithm for system identification based on frequency response is presented. In this method, given a set of magnitudes and phases of the system transfer function in a set of discrete frequencies, a system of linear equations is derived which has a unique and exact solution for the coefficients of the transfer function provided that the data is noise-free and the degrees of...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کامل